PBM Laser Therapy Double-Blind Studies

Airaksinen O., et al.

Airaksinen O., et al.

Antipa C. et al.

Antipa C. et al.

Armino L. et al.

Atsumi K. et al.

Barabas K. et al.

Bihari I., Mester A., Abstract No. 216a.

Boerner E. et al.

Bihari I., Mester A.

Carillo J. et al.
A double-blind, randomized, clinical study of the effectiveness of the helium-neon laser in
preventing pain, swelling and trismus after removal of an impacted third molar.

Ceccherelli F.
Diode laser for cervical myofascial pain. A double-blind study compared to placebo.

Cheng R.
Combined treatments of electrotherapy and soft laser therapy have a synergistic effect in relieving pain and curing the disease. Surgical and medical lasers. 1990; 3 (3): 135 (abstract).

Cieslar G. et al.

Cowen D. et al.

de Bie RA
Effect of laser therapy on ankle sprains

Eckerdal A., Lehmann Bastian H.
Can low-reactive-level laser therapy be used in the treatment of neurogenic facial pain? A double-blind, placebo-controlled study of patients with trigeminal neuralgia.

Emmanoulidis O. et al.
The low power CW-IR laser application significantly accelerates the rehabilitation of competitive athletes with chronic pain. A double-blind study.

England S. et al.
Low power laser therapy for shoulder tendinitis.

Flötter T., Refisch HP

Fructuoso FJG, Moset JM
Estudio randomizado doble ciego sobre los efectos bioestimulantes del láser en la irradiación de la glándula parótida en pacientes afectos de síndrome de Sjoegren. (Double-blind study on the biostimulatory effects of laser irradiation on the parotid gland in patients with Sjögren's syndrome).

Gelskey SC et al.
The effectiveness of the Nd: YAG laser in treating dentin hypersensitivity.
Gerschman JA et al.
Low level laser for dentin hypersensitivity.

Goldman JA et al.
Laser therapy for rheumatoid arthritis.

Gudmundsen J. et al.

Gertner C.
Low-Power Laser Analgesia (LPL): a controlled double-blind study in ankylosing spondarthritis (SPA).

Gärtte S. et al.
Double-blind study to test the efficacy and tolerability of low-energy laser therapy in patients with active osteoarthritis of the knee.
Jaros orthopedics. 1995. 12: 3034.

Haker E. et al.
Is low-energy laser treatment effective for lateral epicondylalgia? J pain and symptom management.

Hashimoto K.
Clinical applications of various lasers in oral surgery.

Hashimoto T. et al.
The effectiveness of laser irradiation on the area near the star ganglion is dose-dependent: a double-blind, crossover, placebo-controlled, crossover, double-blind study.

Hopkins GO et al.

Hoteya K. et al.

Kaiser C. et al.
Estudio en doble ciego randomizado sobre la eficacia del He-Ne en el tratamiento de la sinusitis maxilar aguda: en pacientes con exacerbacion de una infeccion sinusal cronica. (Double-blind, randomized study of the effects of HeNe in the treatment of acute maxillary sinusitis: in patients with exacerbation of chronic antrumitis).
Boleton CDL. 1986; 9:15.
Kamikawa K. et al.

Kemmotsu MD et al.

Khullar SM et al.
The low-level laser treatment improves long-lasting sensory aberrations of the inferior alveolar nerve after a surgical trauma.

Khullar SM et al.
Effect of low-level laser treatment on neurosensory deficits after a sagittal Ramus split osteotomy.

Kim JW, Lee JO
Double-blind clinical cross-over study of an 830 nm diode laser and 5 years of clinical experience with biostimulation in plastic & aesthetic surgery in Asians.

Kinoshita F. et al.
Clinical evaluation of low-energy semiconductor laser therapy in oral surgery - a double-blind study.

Laakso EL et al.
Pain scores and side effects in response to low-level laser therapy (LLLT) for myofascial trigger points.

Lonauer G.
Controlled double-blind study on the effectiveness of He-Ne laser beams compared to He-Ne plus infrared laser beams in the therapy of activated arthrosis of the finger joints.
Clinical experiment rheumatism. 1987; 5 (suppl 2): 39

Longo L. et al.
Treatment with 904 nm and 10600 nm lasers of acute lumbago - double blind control.

Lukas C. et al.
Low-level laser therapy for bedsores station III.

Loegdberg-Andersson M. et al.
Low-level laser therapy (LLLT) for tendonitis and myofascial pain - a randomized, double-blind, controlled study.
Laser therapy. 1997; 2 (9): 79-86.

Do IT et al.
Helium-neon (red light) therapy for arthritis.
Rheumatology, 1983; 3:36.
Meier J.L., Kerkour K.
Traitement laser de la tendinite.

Mester A.
Biostimulating effect in wound healing by continuous wave laser diode 820 nm. Double-blind, randomized cross-over study.

Miyagi K.

Mokhtar B. et al.

Mokhtar B. et al.

Molina J J et al.
La laserterapia como coadyuvante en el tartamiento de la AR (Artritis Reumatoidea).
Boletin CDL, Barcelona. 1987; 14: 4-8.

Moore K. et al.
LLLT treatment for post-therapeutic neuralgia.

Moore K. et al.

Mousques T.
etude en double aveugle des effets du traitement unilateral au laser helium-neon lors de chirurgies parodontales bilatérale simultanées.
Search for Odonto-Stomatol. 1986; 11: 245.

Mousques T.
Etude en double aveugle des effets du helium-neon en chirurgie parodontale.

Neuman I. et al.
Low-energy phototherapy for allergic rhinitis and nasal polyposis.

Nivbrant Bo et al.
Therapeutic laser treatment for osteoarthritis of the knee.
Ortutay J et al.

Oyamada Y. et al.
A double-blind study of He-Ne laser therapy with low power lasers for rheumatoid arthritis.

Palmgren N. et al.
Low power laser therapy for rheumatoid arthritis.

Palmgren N. et al.
Low-level laser therapy for infected abdominal wounds after surgery.

Palmieri B.
A double-blind, stratified, cross-over study of amateur tennis players with tennis elbows using infrared laser therapy.
Medical laser report. 1984; 1: 3-14

Rochkind S. et al.
Double-blind, randomized study of the use of neurotube and laser therapy in the treatment of complete sciatic nerve injury in rats.

Roumeliotis D. et al.
820nm 15mW 4J / cm2, laser diode application for sports injuries. A double-blind study.

Saeki N. et al.
Double-blind test for biostimulation effects on pain relief from diode lasers.

Sasaki K. et al.
A double-blind controlled study to analyze free amino acids in CO2 laser burn wounds in a mouse model after doses of low-incident infrared (830 nm) diode laser energy.

Sasaki K. et al.
A preliminary double-blind controlled study to analyze free amino acids in burn wounds in mice after 830 nm diode laser therapy.

Sato K. et al.
1990; 3 (3): 134 (summary)

Saunders L.
The effectiveness of low-level laser therapy for suprascapular tendonitis.
Clinical rehab. 1995; 9: 126-134
Schindl A. et al.
Low-intensity laser radiation improves blood circulation in the skin in patients with diabetic microangiopathy.

Scudds RA et al:
A Double-Blind Crossover Study of the Effects of a Low Power Gallium Arsenide Laser on Symptoms of Fibrositis.
Physiotherapy Canada. 1989; 41: (suppl. 3): 2.

Simunovic Z., Trobonjaca T. et al.
Treatment of medial and lateral epicondylitis - tennis and golf elbow - with low-level laser therapy: a multicenter, double-blind, placebo-controlled clinical study in 324 patients.

Simunovic Z., Trobonjaca T.
Soft tissue injuries during sports activities and traffic accidents - treatment with low-level laser therapy. A multicenter, double-blind, placebo-controlled clinical study in 132 patients.

Snyder-Mackler L. et al.
Effect of the helium-neon laser on musculoskeletal trigger points.

Snyder-Mackler L. et al.
Effect of helium-neon laser irradiation on peripheral sensory nerve latency.

Snyder-Mackler L. et al.
Effect of helium-neon laser radiation on skin resistance and pain in patients with trigger points in the neck or back.

Soriano FA et al.
Acute cervical spine pain is relieved with gallium arsenide (GaAs) laser radiation. A double-blind preliminary study.

Soriano FA et al.
Laser Surgery Med. 1998, supplement. 10, p. 6th

Toya S. et al.
Report on a computer-randomized double-blind clinical study to determine the effectiveness of the GaAlAs (830 nm) diode laser for pain relief in selected pain conditions.

Taguchi T. et al.
Thermographic changes after laser irradiation in pain.
Tsurko V. et al.
Laser therapy for rheumatoid arthritis. A clinical and morphological study.
Terap ark. 1983; 97. (Russian).

Volez-Gonzalez M. et al.
Treatment of relapse in herpes simplex in the lip and face area and primary herpes simplex in the genital area and the "area pudenda" with HeNe laser or acyclovir low power when administered orally.

Vasseljen O. et al.

Geher J.
Chronic pain relief with low power laser irradiation.

Wanderer J.
Temporary suppression of clone in humans by brief photostimulation.

Walsh D. et al.

Willner R. et al.
Low-power infrared laser biostimulation for chronic osteoarthritis of the hand.

Wylie L. et al.
The hypoalgesic effects of low intensity infrared laser therapy on the mechanical pain threshold.

Yamaguchi M. et al.
Clinical study of the treatment of hypersensitive dentin with a GaAlAs laser diode using the double-blind test.

Abergel P. et al.
Control of connective tissue metabolism by laser: recent developments and future prospects.

Basko I.
A new frontier: laser therapy.

Beck-Friis J., Borg G., Wetterberg L.
Rebound increase in nighttime melatonin levels after evening suppression by bright light exposure in healthy men: relationship to cortisol levels and morning exposure.
Berki T. et al.
Biological effect of helium-neon (HeNe) laser irradiation with low power.

Bihari I., Mester A.

Bossy J. et al.
In-vitro investigation of the depth of penetration of low-energy laser beams in compact bones.
Faculte de Medecine and CHRU de Nimes, BP 26, 3000 NIMES, France. (1985).

Kalderkopf G.
Session Report

Cherry R:
Measurement of protein rotation diffusion in membranes by flash photolysis.

Derr VE et al:
Free radicals appear in some laser irradiated biological materials.
Federal proceedings. 1965; 24, No. 1, annex. 14: 99

Guang Hua Wang et al:
A study of the analgesic effect of low power HeNe lasers and their mechanism by electrophysiological means

Hachenberger I:
Laser beams for herpes diseases.

Haina D. et al:
Animal experiments on light-induced wound healing.
Proc from Laser-81, Opto-Electronics in Munich 1981.

Hong J. et al.: Animal experiments on light-induced wound healing:
Clinical study on laser therapy in 20 patients with post-therapeutic neuralgia.

Honmura A. et al:
Pain relieving effect of Ga-Al-As diode laser irradiation on hyperalgesia in carrageenin-induced inflammation.

Hort O, Vanpel T:
The distribution of Na + and K + under the influence of temperature gradients.
Pflügers Arch. 1971; 323: 158.
Horvath Z. et al:
Possible ab initio explanation of laser "biostimulation" effects.

Kaihøj P:
Low Level Lasers Effect på følsomme Tandhalse - en klinisk pilottest.

Karu T., Andreichuck T., Ryabykh T.
Suppression of chemiluminescence of human blood by diode laser irradiation at wavelengths of 660, 820, 880 or 950 nm.
Laser therapy. 1993; 5: 103.

Karu T:
Photobiological basics of low power laser therapy.

Karu T. and others:
Biostimulation of HeLa cells by low-intensity visible light.

Karu T. et al:
Biostimulation of HeLa cells by low-intensity visible light.

Kern’s T:
HeNe lasers show promise in treating horse injuries.

Kovacs I. et al:
Laser-induced stimulation of the vascularization of the healing wound.
Separatum-EXPERIENTIA. 1974; 30: 341

Kubota J, Ohshiro T:
The effects of low-reactive level laser therapy (LLLT) with diode laser on flap survival in a rat model.

Kudoh Ch. Et al:
Effects of 830 nm gallium-aluminum-arsenide diode laser radiation on the saphenous nerve of the rat. Sodium-potassium adenosine-adenosine triphosphatase activity: a possible pain relief mechanism was investigated.

Lubart R. et al:
A possible mechanism of the low-level laser-live cell interaction.

Manne J:
Le laser arseniure de gallium 6 watts, étude clinique en odonto-stomatologie.
Le Chirurgien Dent de France 1985; 284: 15.
Maricic B et al:
Analgesic effects of the laser in dental therapy.

McKibbin L. and Paraschak D:
A study of the effects of lasers on chronically curved tendons at Whitney Hall Farm Limited, Canada, January 1983.

Mester E. et al:
Studies on the inhibiting or promoting effect of the laser beams.

Mester E. et al:
Effects of direct laser irradiation on human lymphocytes.
Arch Dermatol Res. 1978; 5:31

Mester E. ua: ua:
The biostimulating effect of the laser beam.
Proc from Laser - 81, Opto-Electronics in Munich 1981.

Mizokami T. et al:
Effect of the diode laser on pain:

Montesinos M. et al:
Experimental effects of low-power lasers in encephalin and endorphin synthesis.

Moore K. et al:
LLLT treatment of post-therapeutic neuralgia.

Muldiyarov P. et al:
Effect of monochromatic helium-neon laser red light on the morphology of zymosan arthritis in rats. (Inst. For Rheumatism, Academy of Medical Sciences of the USSR, Mosc).

Naesser M. et al.
Carpal tunnel syndrome - clinical result after low-level laser acupuncture, Microamps TENS and other alternative therapies,
Journal of Alternative and Complementary Medicine Volume 4, No. 4, Nov. 1998

Nasu F. et al:
Cytochemical effects of GaAlAs diode laser radiation on the activity of calcium ion-dependent adenosine triphosphatase of the saphenous artery of the rat.

Oulamara A. et al:
Parascandolo S. et al:
Azione della Laser-terapia nella nevralgia essenziale del trigemino.

Parrado C. et al:
Quantitative study of the morphological changes in the thyroid gland after IR laser radiation.
Lasers in Medical Sciences. 1990; 5: 77.

Passarella S. et al:
Increase of the electrochemical proton potential and the ATP synthesis in mitochondria of the rat liver, which were irradiated in vitro with a helium-neon laser.

Popowa M. et al:
Effect of the helium-neon laser beam on the regeneration of irradiated transplanted skeletal muscles.
Bulle Exp Biol Med. 1978; 80: 333. (ryska m eng abstr.)

Pourreau-Schnider N. et al:
The helium-neon laser treatment converts fibroblasts into myofibroblasts.

Rochkind S. et al:
A single transcutaneous light irradiation of an injured peripheral nerve; comparative study of different wavelengths.

Rochkind S. et al: A single transcutaneous light irradiation
Systemic effects of low-power laser irradiation on the peripheral and central nervous system, skin wounds and burns.

Rochkind S. et al:
Electrophysiological effect of the HeNe laser on the normal and injured sciatic nerve in the rat.

Shiroto C. et al:

Pöntinen P:
The effect of hair lasers on blood circulation in the skin.
Lasers in surgery and medicine Appendix 7, 1995, p. 9 (summary)

Shiroto C. et al:

Wrench DC:
The active transport of water under temperature gradients.
Velez-Gonzalez M. et al:
Treatment of relapse in herpes simplex in the lip and face area and in primary herpes simplex in the genital area and "area pudenda" with a low-power HeNe laser or orally administered acyclovir.

von Ahlfen U et al:
The bottom line. 1987; 5: 927.

Wakabayashi H. et al:
Effect of irradiation with a semiconductor laser on reactions that are induced in trigeminal caudal neurons by tooth pulp stimulation.

Walker J. et al:
Laser therapy for pain in trigeminal neuralgia.

Walker J:
Chronic Pain Relief from Low Power Laser Radiation.

Wakabayashi H. et al:
Treatment of dentin hypersensitivity using GaAlAs soft laser irradiation.

Wang L. et al:

Wilden L. and Dindinger D.:
Treatment of chronic complex diseases of the inner ear with low-level laser therapy in: Laser Therapy, Volume 8, 1996, No. 3, ISSN 0898-5901

Wilden L. and Karthein R.:

Wilden L. and Ellerbrock D.:
Improvement of hearing capacity through low-level laser light (LLLL) - observed using pre- and post-therapeutic audiometry courses of air and bone conduction over 12 frequencies of 0.125 Å ± 12 kHz in: Lasemedizin, Volume 14, 1999, No. 4, ISSN 0938-756X